addend	angle
Review	Review
area	bar graph
Review	Review
capacity	composite number
Review	Review
cubic units Review	difference Review

Copyright © Big Ideas Learning, LLC All rights reserved.

expression	factor
Review	Review
line segment	number line
Review	Review
ordered pair	parallel
Review	Keview
parallelogram Review	plane Review

When whole numbers other than zero are multiplied together, each number is a factor of the product. $2 \times 3 \times 4 = 24$, so 2, 3, and 4 are factors of 24.	A mathematical phrase containing numbers, operations, and/or variables See numerical expression or algebraic expression.
A line whose points are associated with numbers that increase from left to right $\underbrace{-4 -3 -2 -1 0 1 2 3 4}_{-4}$	Part of a line that consists of two points, called endpoints, and all the points on the line between the endpoints
Two lines in the same plane that do not intersect p_1 q_1 q_1 q_2 q_1 q_2 q_3 q_4 q_4 q_1 q_2 q_3 q_4 q	A pair of numbers (x, y) used to locate a point in a coordinate plane; The first number is the <i>x</i> -coordinate, and the second number is the <i>y</i> -coordinate. (-2, 1) $(-2, 1)$ $(-2, 1)$ $(-2, 1)$ is -2, and the <i>y</i> -coordinate is 1.
A flat surface that extends without end in all directions	A quadrilateral with two pairs of parallel sides

Copyright © Big Ideas Learning, LLC All rights reserved.

prime number	product
Review	<i>Review</i>
quadrilateral	quotient
<i>Review</i>	<i>Review</i>
rectangle	right angle
Review	Review
square	square(d)
Review	Review

The result when two or more numbers are multiplied The product of 4 and 3 is 4×3 , or 12.	A whole number greater than 1 with exactly two factors, 1 and itself 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
The result of a division	A polygon with four sides
The quotient of 10 and 5 is $10 \div 5$, or 2.	
An angle whose measure is 90°	A parallelogram with four right angles
A number squared is the number raised to an exponent of 2.	A parallelogram with four sides that have the same length and four right angles
5 squared means 5 ² , or 25.	

Copyright © Big Ideas Learning, LLC All rights reserved.

square units	sum
Review	Review
three-dimensional figure	trapezoid
Review	<i>Review</i>
triangle	two-dimensional figure
Review	Review
whole numbers	x-axis
Review	<i>Review</i>

The result when two or more numbers are added The sum of 4 and 3 is 4 + 3, or 7.	The units are measured in square feet (ft^2) , square meters (m^2) .
A quadrilateral with exactly one pair of parallel sides	A figure that has length, width, and depth
A figure that has only length and width	A polygon with three sides
The horizontal number line in a coordinate plane See coordinate plane.	The numbers 0, 1, 2, 3, 4,

Copyright © Big Ideas Learning, LLC All rights reserved.

x-coordinate	Paviau	y-axis Review
	Kevlew	
y-coordinate	Review	

The vertical number line in a coordinate plane See coordinate plane.	The first coordinate in an ordered pair, which indicates how many units to move to the left or right from the origin In the ordered pair (3, 5), the <i>x</i> -coordinate is 3.
	The second coordinate in an ordered pair, which indicates how many units to move up or down from the origin In the ordered pair (3, 5), the <i>y</i> -coordinate is 5.

base (of a power)	common factors
Chapter 1	<i>Chapter 1</i>
common multiples Chapter 1	evaluate (a numerical expression) ^{Chapter 1}
exponent	factor pair
Chapter 1	Chapter 1
factor tree Chapter 1	greatest common factor (GCF) Chapter 1

Copyright © Big Ideas Learning, LLC All rights reserved.

Factors that are shared by two or more numbers	The base of a power is the repeated factor.
2 is a common factor of 8 and 10.	See power.
Use the order of operations to find the value of a numerical expression.	Multiples that are shared by two or more numbers
See order of operations.	Multiples of 4: 4, 8, 12, 16, 20, 24, Multiples of 6: 6, 12, 18, 24, 30, 36,
	The first common multiples of 4 and 6 are 12 and 24.
Two whole numbers other than zero that are multiplied together to get a product	The exponent of a power indicates the number of times the base is used as a factor.
Because $2 \bullet 5 = 10$, the pair 2, 5 is a factor pair of 10.	See power.
The greatest of the common factors of two or more numbers	A diagram that shows the prime factorization of a number
The common factors of 12 and 20 are 1, 2, and 4. So the GCF of 12 and 20 is 4.	2 • 30 2 • 15 3 • 5
	$60 = 2 \bullet 2 \bullet 3 \bullet 5$, or $2^2 \bullet 3 \bullet 5$

least common denominator (LCD)	least common multiple (LCM)
Chapter 1	Chapter 1
numerical expression	order of operations
Chapter 1	Chapter 1
perfect square	power
Chapter I	Chapter I
prime factorization	Venn diagram
· · · · ·	

Copyright © Big Ideas Learning, LLC All rights reserved. Big Ideas Math Advanced 1

The least of the common multiples of two or more numbersMultiples of 10: 10, 20, 30, 40,Multiples of 15: 15, 30, 45, 60,The least common multiple of 10 and 15 is 30.	The least common multiple of the denominators of two or more fractions The least common denominator of $\frac{3}{4}$ and $\frac{5}{6}$ is the least common multiple of 4 and 6, or 12.
The order in which to perform operations when evaluating expressions with more than one operation To evaluate $5 + 2 \times 3$, you perform the multiplication before the addition. $5 + 2 \times 3 = 5 + 6 = 11$	An expression that contains only numbers and operations $12 + 6, 18 + 3 \times 4$
A product of repeated factors base exponent $3\frac{4}{3} = 3 \cdot 3 \cdot 3 \cdot 3$ power 3 is used as a factor 4 times.	The square of a whole number Because $7^2 = 49$, 49 is a perfect square.
A diagram that uses circles to describe relationships between two or more sets	A composite number written as the product of its prime factors $60 = 2 \times 2 \times 3 \times 5$

Copyright © Big Ideas Learning, LLC All rights reserved.

٦

Multiplicative Inverse Property	reciprocals
Chapter 2	Chapter 2

Two numbers whose product is 1	The product of a nonzero number and its reciprocal is 1.
Because $\frac{4}{5} \times \frac{5}{4} = 1$, $\frac{4}{5}$ and $\frac{5}{4}$ are reciprocals.	$5 \bullet \frac{1}{5} = 1$

Addition Property of Zero	algebraic expression
Chapter 3	Chapter 3
Associative Properties of Addition and Multiplication Chapter 3	coefficient Chapter 3
Commutative Properties of Addition and Multiplication Chapter 3	constant Chapter 3
Distributive Property	equivalent expressions
<i>Chapter 3</i>	Chapter 3

An expression that contains numbers, operations, and one or more symbols $8 + x, 6 \times a - b$	The sum of any number and 0 is that number. 5 + 0 = 5
The numerical factor of a term that contains a variable In the algebraic expression $6k + 8$, 6 is the coefficient of the term $6k$.	Changing the grouping of addends or factors does not change the sum or product. $(3 + 4) + 5 = 3 + (4 + 5)$ $(3 \cdot 4) \cdot 5 = 3 \cdot (4 \cdot 5)$
A term without a variable In the expression $2x + 8$, the term 8 is a constant.	Changing the order of addends or factors does not change the sum or product. 2 + 8 = 8 + 2 $2 \cdot 8 = 8 \cdot 2$
Expressions with the same value 7 + 4, 4 + 7	To multiply a sum or difference by a number, multiply each number in the sum or difference by the number outside the parentheses. Then evaluate. 3(12 + 9) = 3(12) + 3(9) $3(12 - 9) = 3(12) - 3(9)$

Copyright © Big Ideas Learning, LLC All rights reserved.

factoring an expression	like terms
Chapter 3	Chapter 3
Multiplication Properties of Zero and One	terms (of an algebraic expression)
Chapter 3	Chapter 3
variable	
Chapter 3	

Terms of an algebraic expression that have the same variables raised to the same exponents	Writing a numerical expression or algebraic expression as a product of factors
4 and 8, 2 <i>x</i> and 7 <i>x</i>	5x - 15 = 5(x - 3)
The parts of an algebraic expression The terms of $4x + 7$ are $4x$ and 7.	The product of any number and 0 is 0. The product of any number and 1 is that number. $5 \cdot 0 = 0$ $6 \cdot 1 = 6$
	A symbol that represents one or more numbers x is a variable in $2x + 1$.

composite figure	polygon
Chapter 4	Chapter 4

conversion factor	equivalent rates
Chapter 5	Chapter 5
equivalent ratios	metric system
Chapter 5	Chapter 5
percent	rate
Chapter 5	Chapter 5
ratio Chapter 5	ratio table Chapter 5

Copyright © Big Ideas Learning, LLC All rights reserved.

Rates that have the same unit rate 6 miles in 3 hours and 4 miles in 2 hours	A rate that equals 1; A conversion factor is used to convert units. 1 mile = 5280 feet
Decimal system of measurement, based on powers of 10, that contains units for length, capacity, and mass centimeter, meter, liter, kilogram	Two ratios that describe the same relationship 2 : 3 and 4 : 6
A ratio of two quantities using different units You read 3 books every 2 weeks.	A part-to-whole ratio where the whole is 100 $37\% = 37$ out of $100 = \frac{37}{100}$
A table used to find and organize equivalent ratios $ \begin{array}{r} +1 \\ +1 \\ +1 \\ \hline \\ $	A comparison of two quantities; The ratio of a to b can be written as $a : b$. Ratios can be part-to-part, part-to-whole, or whole-to-part comparisons. 4:1

unit analysis	unit rate
	Chapter 5
U.S. customary system Chapter 5	

A rate that compares a quantity to one unit of another quantity

The speed limit is 65 miles per hour.

$$36 \text{ gf} \bullet \frac{1 \text{ gal}}{4 \text{ gf}} = 9 \text{ gal}$$

System of measurement that contains units for length, capacity, and weight

inches, feet, quarts, gallons, ounces, pounds

absolute value	coordinate plane
Chapter 6	Chapter 6
integers	negative numbers
Chapter 6	Chapter 6
opposites	origin
Chapter 6	Chapter 6
positive numbers	quadrants

Copyright © Big Ideas Learning, LLC All rights reserved. Big Ideas Math Advanced 1

A coordinate plane is formed by the intersection of a horizontal number line and a vertical number line. $\begin{array}{c} \hline \mathbf{Quadrant II} & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{Axis} & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{W} \cdot \mathbf{Axis} & \downarrow \\ \hline \mathbf{W} \cdot \mathbf{W} \cdot \mathbf{Axis} & \downarrow \\ \hline \mathbf{W} \cdot \mathbf$	The distance between a number and 0 on a number line; The absolute value of a number <i>a</i> is written as $ a $. -5 = 5 5 = 5
Numbers that are less than 0 -10, -500, -10,000	The set of whole numbers and their opposites $\dots, -3, -2, -1, 0, 1, 2, 3, \dots$
The point, represented by the ordered pair (0, 0), where the horizontal and vertical number lines intersect in a coordinate plane <i>See coordinate plane</i> .	Two numbers that are the same distance from 0 on a number line, but on opposite sides of 0 -3 and 3 are opposites.
The four regions created by the intersection of the horizontal and vertical number lines in a coordinate plane <i>See coordinate plane</i> .	Numbers that are greater than 0 0.5, 2, 100

Addition Property of Equality Chapter 7	Addition Property of Inequality Chapter 7
dependent variable Chapter 7	Division Property of Equality Chapter 7
Division Property of Inequality Chapter 7	equation Chapter 7
equation in two variables	graph of an inequality Chapter 7

Copyright © Big Ideas Learning, LLC All rights reserved.

When you add the same number to each side of	When you add the same number to each side of
an inequality, the inequality remains true.	an equation, the two sides remain equal.
$\begin{aligned} x - 4 &> 5 \\ \pm 4 &\pm 4 \\ x &> 9 \end{aligned}$	$x - 4 = 5$ $\frac{\pm 4}{x} = \frac{\pm 4}{9}$
When you divide each side of an equation by the same nonzero number, the two sides remain equal. $4x = 32$ $\frac{4x}{4} = \frac{32}{4}$ $x = 8$	The variable whose value depends on the independent variable in an equation in two variables In the equation $y = 5x - 8$, y is the dependent variable.
A mathematical sentence that uses an equal sign, =, to show that two expressions are equal 4x = 16, a + 7 = 21	When you divide each side of an inequality by the same positive number, the inequality remains true. $4x < 8$ $\frac{4x}{4} < \frac{8}{4}$ $x < 2$
A graph that shows all the solutions of an inequality on a number line	An equation that represents two quantities that
x > 2	change in relationship to one another
4 + + + + + + + + + + + + + + + + + + +	y = 2x, y = 4x - 3

Copyright © Big Ideas Learning, LLC All rights reserved.

independent variable	inequality
Chapter 7	Chapter 7
inverse operations Chapter 7	Multiplication Property of Equality Chapter 7
Multiplication Property of	Multiplicative Inverse
Inequality	Property
Chapter 7	Chapter 7
solution (of an equation) Chapter 7	solution of an equation in two variables Chapter 7

A mathematical sentence that compares expressions; It contains the symbols \langle , \rangle, \leq , or \geq . $x - 4 < 14, x + 5 \geq 67$	The variable representing the quantity that can change freely in an equation in two variables In the equation $y = 5x - 8$, <i>x</i> is the independent variable.
When you multiply each side of an equation by the same nonzero number, the two sides remain equal. $\frac{x}{4} = 2$ $\frac{x}{4} \bullet 4 = 2 \bullet 4$ $x = 8$	Operations that "undo" each other, such as addition and subtraction or multiplication and division
The product of a nonzero number and its reciprocal is 1. $5 \cdot \frac{1}{5} = 1$	When you multiply each side of an inequality by the same positive number, the inequality remains true. $\frac{x}{4} < 2$ $\frac{x}{4} \bullet 4 < 2 \bullet 4$ $x < 8$
An ordered pair that makes an equation in two variables true (3, 4) is a solution of the equation $y = x + 1$.	A value that makes an equation true 6 is the solution of the equation $x - 4 = 2$.

Copyright © Big Ideas Learning, LLC All rights reserved.

solution of an inequality	solution set
Chapter 7	Chapter 7
Subtraction Property of	Subtraction Property of
Equality	Inequality
Chapter 7	Chapter 7

The set of all solutions of an inequality	A value that makes an inequality true A solution of the inequality $x + 3 > 9$ is $x = 12$.
When you subtract the same number from each	When you subtract the same number from each
side of an inequality, the inequality remains true.	side of an equation, the two sides remain equal.
$\begin{array}{rrrr} x+4 > & 5\\ \underline{-4} & \underline{-4}\\ x > & 1 \end{array}$	$x + 4 = 5$ $\frac{-4}{x} = -4$ $x = -1$

edge	face
Chapter 8	Chapter 8
net	polyhedron
Chapter 8	Chapter 8
prism	pyramid
Chapter 8	Chapter 8
solid Chapter 8	surface area Chapter 8

Copyright © Big Ideas Learning, LLC All rights reserved.

Copyright © Big Ideas Learning, LLC All rights reserved.

Big Ideas Math Advanced 1

vertex (of a solid)	volume
Chapter 8	Chapter 8

first quartile (Q ₁)	interquartile range Chapter 9
mean	mean absolute deviation
Chapter 9	Chapter 9
measure of center	measure of variation
Chapter 9	Chapter 9
median Chapter 9	mode Chanter 9

Copyright © Big Ideas Learning, LLC All rights reserved. Big Ideas Math Advanced 1

The difference between the third quartile and the first quartile of a data set; represents the range of the middle half of the data The interquartile range of the data set 3, 4, 18, 16, 21, 26 is $21 - 4 = 17$.	The median of the lower half of a data set See quartiles.
An average of how much data values differ from the mean The mean of the data set 5, 7, 12, 16 is 10. The sum of the distances between each data value and the mean is 16. So, the mean absolute deviation is $\frac{16}{4} = 4$.	The sum of the data divided by the number of data values The mean of the values 7, 4, 8, and 9 is $\frac{7+4+8+9}{4} = \frac{28}{4} = 7.$
A measure that describes the distribution of a data set The range, interquartile range, and mean absolute deviation are all measures of variation.	A measure that describes the typical value of a data set The mean, median, and mode are all measures of center.
The data value or values that occur most often; Data can have one mode, more than one mode, or no mode. The modes of the data set 3, 4, 4, 7, 7, 9, 12 are 4 and 7 because they occur most often.	For a data set with an odd number of ordered values, the median is the middle value. For a data set with an even number of ordered values, the median is the mean of the two middle values. The median of the data set 24, 25, 29, 33, 38 is 29 because 29 is the middle value.

outlier	quartiles
Chapter 9	Chapter 9
range (of a data set)	statistical question
statistics Chapter 9	third quartile (Q_3)

The quartiles of a data set divide the data into four equal parts. median (second quartile) = 12 lower half \downarrow upper half $\overrightarrow{3 4 8}$ $\overrightarrow{16 21 26}$ first quartile, Q_1 third quartile, Q_3	A data value that is much greater or much less than the other values In the data set 23, 42, 33, 117, 36, and 40, the outlier is 117.
A question for which you do not expect to get a single answer "What is the daily high temperature in August?"	The difference between the greatest value and the least value of a data set The range of the data set 12, 16, 18, 22, 27, 35 is 35 - 12 = 23.
The median of the upper half of a data set See quartiles.	The science of collecting, organizing, analyzing, and interpreting data

٦

box-and-whisker plot	five-number summary
Chapter 10	Chapter 10
frequency	frequency table
Chapter 10	Chapter 10
histogram	leaf
Chapter 10	Chapter 10
skewed left Chapter 10	skewed right Chapter 10

Copyright © Big Ideas Learning, LLC All rights reserved.

The five nu box-and-wl least value, greatest val	umbers that mak hisker plot , first quartile, n lue	ce up a nedian, third qu	uartile,	A type of graph that represents a data set along a number line by using the least value, the greatest value, and the quartiles of the data
A table use	ed to group data	values into int	ervals	The number of data values in an interval
Pa	airs of Shoes	Frequency		Saa fuquun mutabla on histoorium
	1–5	11		see jrequency lable or histogram.
	6-10	4		
	11–15	0		
	16-20	3		
	21–25	6		
Digit or digits on the right of a stem-and-leaf plot See stem-and-leaf plot.		leaf plot	A bar graph that shows the frequency of data values in intervals of the same size; The height of a bar represents the frequency of the values in the interval. There are no spaces between bars.	
The distribution of a data set is skewed right when the "tail" of the graph extends to the right and most of the data are on the left.		ght when t and most	The distribution of a data set is skewed left when the "tail" of the graph extends to the left and most of the data are on the right.	

stem	stem-and-leaf plot
Chapter 10	Chapter 10
symmetric (distribution) Chapter 10	

A type of data display that uses the digits of data values to organize a data set; Each data value is broken into a stem (digit or digits on the left) and a leaf (digit or digits on the right).	Test S Stem 6 7 8 9 10	Leaf 6 2 1 3 4 6 8 0 0 2 7 8 0 Key: 9 4 = 94 points	Digit or digits on the left of the stem-and-leaf plot See stem-and-leaf plot.
			The distribution of a data set is symmetric when the left side of the graph is a mirror image of the right side of the graph.

absolute value	additive inverse
Chapter 11	Chapter 11
Additive Inverse Property	integers
Chapter 11	Chapter 11
opposites	
Chapter 11	

The opposite of a number The additive inverse of 8 is -8.	The distance between a number and 0 on a number line; The absolute value of a number <i>a</i> is written as $ a $. -5 = 5 5 = 5
The set of whole numbers and their opposites -3 , -2 , -1 , 0, 1, 2, 3,	The sum of an integer and its additive inverse is 0. 8 + (-8) = 0
	Two numbers that are the same distance from 0, but on opposite sides of 0 -3 and 3 are opposites.

rational number	repeating decimal
Chapter 12	Chapter 12
terminating decimal	
Chapter 12	

A decimal that has a pattern that repeats $0.555 = 0.\overline{5}$ $1.727272 = 1.\overline{72}$	A number that can be written as $\frac{a}{b}$ where <i>a</i> and <i>b</i> are integers and $b \neq 0$ $3 = \frac{3}{1}, \qquad -\frac{2}{5} = \frac{-2}{5}$ $0.25 = \frac{1}{4}, \qquad 1\frac{1}{3} = \frac{4}{3}$
	A decimal that ends 1.5, 2.58, -5.605

Addition Property of Equality	Division Property of Equality
Chapter 13	Chapter 13
equivalent equations	factoring an expression
Chapter 13	Chapter 13
like terms	linear expression
Chapter 13	Chapter 13
Multiplication Property of Equality	simplest form (of an algebraic expression)
Chapter 13	Chapter 13

Т

Copyright © Big Ideas Learning, LLC All rights reserved. Big Ideas Math Advanced 1

Dividing each side of an equation by the same number produces an equivalent equation. $-3y = 18$ $\frac{-3y}{-3} = \frac{18}{-3}$ $y = -6$	Adding the same number to each side of an equation produces an equivalent equation. $x - 5 = -1$ $\frac{+5}{x} = \frac{+5}{4}$
Writing an expression as a product of factors	Equations that have the same solutions
5x - 15 = 5(x - 3)	2x - 8 = 0 and $2x = 8$
An algebraic expression in which the exponent of the variable is 1 $-4x$, $3x + 5$, $5 - \frac{1}{6}x$	Terms of an algebraic expression that have the same variables raised to the same exponents 4 and 8, $2x$ and $7x$
An algebraic expression is in simplest form when	Multiplying each side of an equation by the same
it has no like terms and no parentheses.	number produces an equivalent equation.
$6a + 9a^2$, $3t + 5$	$\frac{x}{3} = -6$ $3 \cdot \frac{x}{3} = 3 \cdot (-6)$ $x = -18$

Copyright © Big Ideas Learning, LLC All rights reserved.

Subtraction Property of Equality

Chapter 13

Subtracting the same number from each side of an equation produces an equivalent equation.

$$w + 5 = 25$$
$$\frac{-5}{w} = 20$$

• Chapter 14	Chapter 14
cross products	Cross Products Property
Chapter 14	Chapter 14
direct variation	proportion
Chapter 14	Chapter 14
proportional	rate

Big Ideas Math Advanced 1

٦

The number k in the direct variation equation y = kx The constant of proportionality in the equation y = 2x is 2.	A fraction that has at least one fraction in the numerator, denominator, or both $\frac{\frac{1}{4}}{\frac{1}{2}}$
The cross products of a proportion are equal. $2 \bullet 6 = 3 \bullet 4$	In the proportion $\frac{a}{b} = \frac{c}{d}$, the products $a \bullet d$ and $b \bullet c$ are called cross products. $2 \bullet 6 \text{ and } 3 \bullet 4$
An equation stating that two ratios are equivalent $\frac{3}{4} = \frac{12}{16}$	Two quantities x and y show direct variation when $y = kx$, where k is a number and $k \neq 0$. The graph of $y = kx$ is a line with a slope of k that passes through the origin.
A ratio of two quantities with different units You read 3 books every 2 weeks.	Two quantities that form a proportion are proportional. Because $\frac{3}{4}$ and $\frac{12}{16}$ form a proportion, $\frac{3}{4}$ and $\frac{12}{16}$ are proportional.

ratio	slope
Chapter 1-	4 Chapter 14
unit rate	
Chapter 1	4

discount	interest
Chapter 15	Chapter 15
markup	percent of change
Chapter 15	Chapter 15
percent of decrease	percent error
Chapter 15	Chapter 15
percent of increase Chapter 15	principal Chapter 15

Money paid or earned for the use of money See simple interest.	A decrease in the original price of an item The original price of a pair of shoes is \$95. The sale price is \$65. The discount is \$30.
The percent that a quantity changes from the original amount	The increase from what a store pays to the
percent of change = $\frac{\text{amount of change}}{\text{original amount}}$	selling price
The percent of change from 20 to 25 is:	A store buys a hat for \$12 and sells it for \$20.
$\frac{25 - 20}{20} = \frac{5}{20} = 25\%$	The markup is \$8.
The percent that an estimated quantity differs from	The percent of change when the original amount
the actual amount	decreases
percent error $=$ $\frac{\text{amount of error}}{\text{actual amount}}$	percent of decrease
Estimated length: 16 feet Actual length: 21	$= \frac{\text{original amount} - \text{new amount}}{\text{original amount}}$ The price of a shirt decreases from \$20 to \$10.
Percent error: $\frac{21 - 16}{21}$, or 23.8%	The percent of decrease is $\frac{20 - 10}{20}$, or 50%.

Big Ideas Math Advanced 1

simple interest

Chapter 15

