Mathematics Reference Sheet

Conversions

U.S. Customary

1 foot = 12 inches

1 yard = 3 feet

1 mile = 5280 feet

 $1 \text{ acre} \approx 43,560 \text{ square feet}$

1 cup = 8 fluid ounces

1 pint = 2 cups

1 quart = 2 pints

1 gallon = 4 quarts

1 gallon = 231 cubic inches

1 pound = 16 ounces

1 ton = 2000 pounds

1 cubic foot \approx 7.5 gallons

U.S. Customary to Metric

1 inch = 2.54 centimeters

1 foot \approx 0.3 meter

1 mile \approx 1.61 kilometers

1 quart \approx 0.95 liter

1 gallon \approx 3.79 liters

 $1 \text{ cup} \approx 237 \text{ milliliters}$

1 pound ≈ 0.45 kilogram

1 ounce \approx 28.3 grams

1 gallon \approx 3785 cubic centimeters

Time

1 minute = 60 seconds

1 hour = 60 minutes

1 hour = 3600 seconds

1 year = 52 weeks

Temperature

$$C = \frac{5}{9}(F - 32)$$

$$F = \frac{9}{5}C + 32$$

Metric

1 centimeter = 10 millimeters

1 meter = 100 centimeters

1 kilometer = 1000 meters

1 liter = 1000 milliliters

1 kiloliter = 1000 liters

1 milliliter = 1 cubic centimeter

1 liter = 1000 cubic centimeters

1 cubic millimeter = 0.001 milliliter

1 gram = 1000 milligrams

1 kilogram = 1000 grams

Metric to U.S. Customary

1 centimeter ≈ 0.39 inch

1 meter \approx 3.28 feet

1 kilometer ≈ 0.62 mile

1 liter ≈ 1.06 quarts

1 liter ≈ 0.26 gallon

1 kilogram \approx 2.2 pounds

1 gram ≈ 0.035 ounce

1 cubic meter \approx 264 gallon

Number Properties

Commutative Properties of Addition and Multiplication

$$a + b = b + a$$

$$a \cdot b = b \cdot a$$

Associative Properties of Addition and Multiplication

$$(a + b) + c = a + (b + c)$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Addition Property of Zero

$$a + 0 = a$$

Multiplication Properties of Zero and One

$$a \cdot 0 = 0$$

$$a \cdot 1 = a$$

Distributive Property:

$$a(b+c) = ab + ac$$

$$a(b-c) = ab - ac$$

Properties of Equality

Addition Property of Equality

If
$$a = b$$
, then $a + c = b + c$.

Subtraction Property of Equality

If
$$a = b$$
, then $a - c = b - c$.

Multiplication Property of Equality

If
$$a = b$$
, then $a \cdot c = b \cdot c$.

Multiplicative Inverse Property

$$n \cdot \frac{1}{n} = \frac{1}{n} \cdot n = 1, n \neq 0$$

Division Property of Equality

If
$$a = b$$
, then $a \div c = b \div c$, $c \ne 0$.

Squaring both sides of an equation

If
$$a = b$$
, then $a^2 = b^2$.

Cubing both sides of an equation

If
$$a = b$$
, then $a^3 = b^3$.

Properties of Exponents

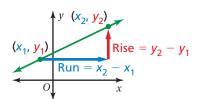
Product of Powers Property: $a^m \cdot a^n = a^{m+n}$

Quotient of Powers Property: $\frac{a^m}{a^n} = a^{m-n}$, $a \neq 0$

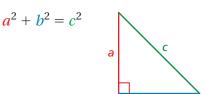
Power of a Power Property: $(a^m)^n = a^{mn}$

Power of a Product Property: $(ab)^m = a^m b^m$

Zero Exponents: $a^0 = 1$, $a \neq 0$


Negative Exponents: $a^{-n} = \frac{1}{a^n}$, $a \neq 0$

Slope


$$m = \frac{\text{rise}}{\text{run}}$$

$$= \frac{\text{change in } y}{\text{change in } x}$$

$$= \frac{y_2 - y_1}{x_2 - x_1}$$

Pythagorean Theorem

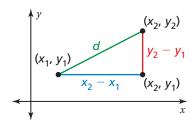
Converse of the Pythagorean Theorem

If the equation $a^2 + b^2 = c^2$ is true for the side lengths of a triangle, then the triangle is a right triangle.

Equations of Lines

Slope-intercept form y = mx + b

Standard form


$$ax + by = c, a, b \neq 0$$

Point-slope form

$$y - y_1 = m(x - x_1)$$

Distance Formula

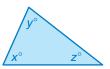
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Volume

Cylinder

 $V = Bh = \pi r^2 h$

Cone

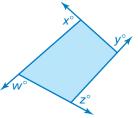


 $V = \frac{1}{3}Bh = \frac{1}{3}\pi r^2 h$

Angles of Polygons

Interior Angle Measures of a Triangle

$$x + y + z = 180$$



Interior Angle Measures of a Polygon

The sum *S* of the interior angle measures of a polygon with *n* sides is $S = (n - 2) \cdot 180^{\circ}$.

Exterior Angle Measures of a Polygon

$$w + x + y + z = 360$$

Sphere

 $V = \frac{4}{3}\pi r^3$