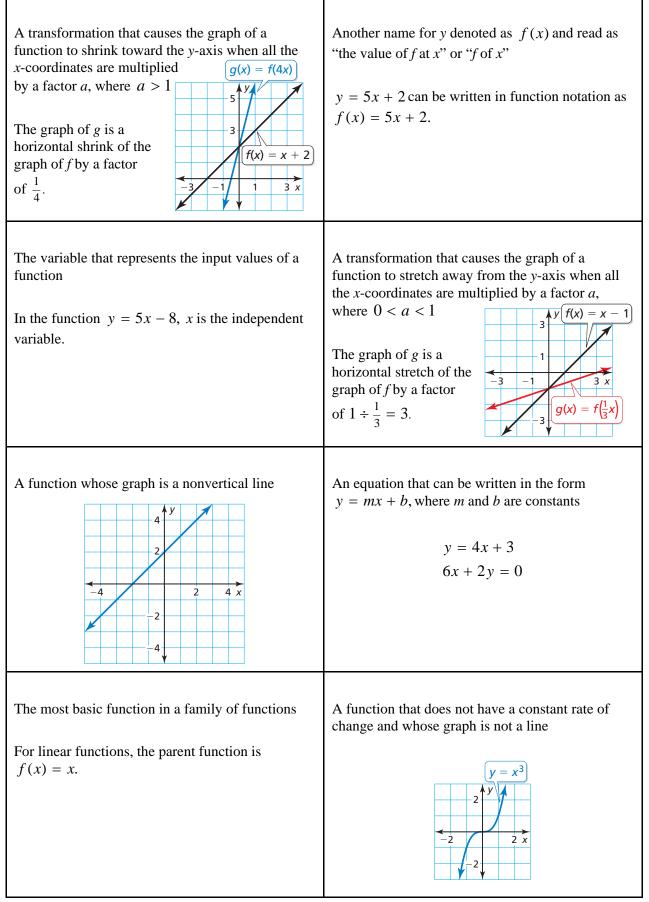
absolute value equation Chapter 1 (p. 28)	conjecture Chapter 1 (p. 3)
equation	equivalent equations
Chapter 1 (p .4) extraneous solution	Chapter 1 (p. 4) formula
Chapter 1 (p. 31) identity	Chapter 1 (p. 37)
Chapter 1 (p. 21)	Chapter 1 (p. 4)

vocabulary riash cards	
An unproven statement about a general mathematical concept The product of an even and an odd number is always an even number.	An equation that contains an absolute value expression $\begin{aligned} x &= 2\\ x+1 &= 5\\ 3 2x+1 &= 6 \end{aligned}$
Equations that have the same solution(s)	A statement that two expressions are equal
2x - 8 = 0 and $2x = 8$	4x = 16 $a + 7 = 21$
A literal equation that shows how one variable is related to one or more other variables	An apparent solution that must be rejected because it does not satisfy the original equation
$A = \ell w$ $I = Prt$ $d = rt$	When you square each side of $x = \sqrt{x+2}$, the resulting equation has two solutions, $x = -1$ and $x = 2$. However, $x = -1$ is an extraneous solution because it does not satisfy the original equation.
Two operations that undo each other, such as addition and subtraction	An equation that is true for all values of the variable
Multiplication and division are inverse operations.	2(x + 1) = 2x + 2 -3(2x + 3) = -6x - 9

linear equation in one variable	literal equation
Chapter 1 (p. 4)	<i>Chapter 1 (p. 36)</i>
rule	solution of an equation
Chapter 1 (p. 3)	<i>Chapter 1 (p. 4)</i>
theorem	

An equation that has two or more variables 2y + 6x = 12	An equation that can be written in the form ax + b = 0, where a and b are constants and $a \neq 0$ 5x + 6 = 0 3x = 8
A value that makes an equation true The solution of the equation $x - 4 = 2$ is 6.	A proven statement about a general mathematical concept; also known as a theorem The Pythagorean Theorem
	A proven statement about a general mathematical concept The Pythagorean Theorem

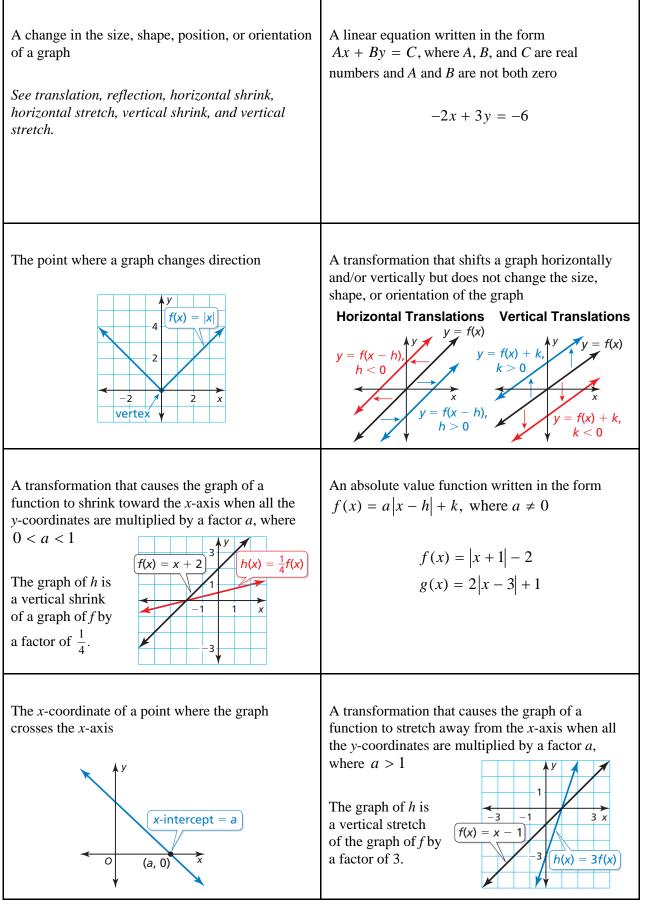

absolute deviation	absolute value inequality
<i>Chapter 2 (p. 90)</i>	<i>Chapter 2 (p. 88)</i>
compound inequality	equivalent inequalities
<i>Chapter 2 (p. 82)</i>	<i>Chapter 2 (p. 62)</i>
graph of an inequality	inequality
<i>Chapter 2 (p. 56)</i>	<i>Chapter 2 (p. 54)</i>
solution of an inequality	solution set
<i>Chapter 2 (p. 55)</i>	<i>Chapter 2 (p. 55)</i>

An inequality that contains an absolute value expression x < 7 $ x - 3 \ge 5$ $4 2x + 4 \le 16$	The absolute value of the difference of a number x and a given value absolute deviation = $ x - \text{given value} $
Inequalities that have the same solutions 3x + 5 > 0 and $3x > 5$	An inequality formed by joining two inequalities with the word "and" or the word "or" $x \ge 2 \text{ and } x < 5$ $y \le -2 \text{ or } y > 1$ $4 < x - 1 < 7$
A mathematical sentence that compares expressions $x - 4 < -14$ $x + 5 \ge -67$	A graph that shows the solution set of an inequality on a number line x > -2 $4 + 0 + + + + + + + + + + + + + + + + +$
The set of all solutions of an inequality 5 is in the solution set of $x > 1$ 3 is not in the solution set of $x \le 1$	A value that makes an inequality true A solution of the inequality $x + 3 > -9$ is $x = 2$.

absolute value function	constant function
Chapter 3 (p. 156)	<i>Chapter 3 (p. 138)</i>
continuous domain	dependent variable
Chapter 3 (p. 114)	Chapter 3 (p. 107)
discrete domain	domain
Chapter 3 (p. 114)	Chapter 3 (p. 106)
family of functions	function
Chapter 3 (p. 146)	Chapter 3 (p. 100)


Vocabulary Flash Carus	
A linear equation written in the form $y = 0x + b$, or $y = b$ y = 0x + 5, or $y = 5$	A function that contains an absolute value expression $f(x) = x + y$
The variable that represents output values of a function In the function $y = 2x - 3$, y is the dependent variable.	A set of input values that consist of all numbers in an interval All numbers from 1 to 5 $\leftarrow +$ + $\leftarrow +$ + $\leftarrow +$ $\leftarrow +$ -1 0 1 2 3 4 5 6
The set of all possible input values of a function For the ordered pairs (0, 6), (1, 7), (2, 8), and (3, 9), the domain is 0, 1, 2, and 3.	A set of input values that consists of only certain numbers in an interval Integers from 1 to 5 -1 0 1 2 3 4 5 6
A relation that pairs each input with exactly one output The ordered pairs $(0, 1)$, $(1, 2)$, $(2, 4)$, and $(3, 6)$ represent a function. Ordered Pairs (0, 1) (1, 2) (2, 4) (3, 6) Input Output 0 + 1 1 + 2 2 + 4 3 + 6	A group of functions with similar characteristics Linear functions and absolute value functions are families of functions.

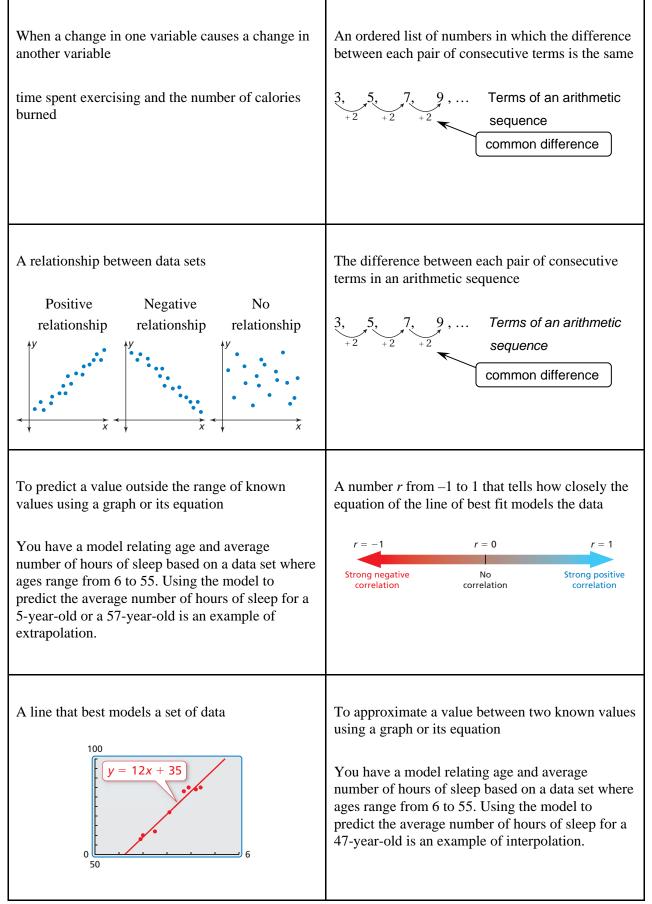
function notation	horizontal shrink
<i>Chapter 3 (p. 122)</i>	<i>Chapter 3 (p. 148)</i>
horizontal stretch	independent variable
Chapter 3 (p. 148)	Chapter 3 (p. 107)
linear equation in two variables	linear function
Chapter 3 (p. 112)	<i>Chapter 3 (p. 112)</i>
nonlinear function	parent function
<i>Chapter 3 (p. 112)</i>	<i>Chapter 3 (p. 146)</i>



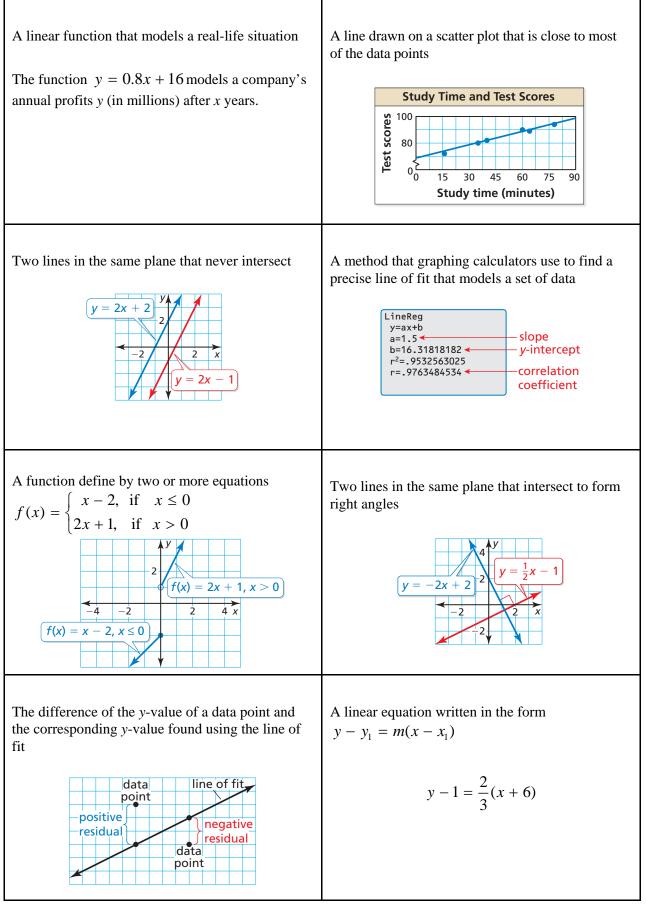
Г

range of a function	reflection
Chapter 3 (p. 106)	<i>Chapter 3 (p. 147)</i>
relation	rise
Chapter 3 (p. 104)	<i>Chapter 3 (p. 136)</i>
run	slope
Chapter 3 (p. 136)	Chapter 3 (p. 136)
slope-intercept form	solution of a linear equation in two variables
Chapter 3 (p. 138)	Chapter 3 (p. 114)

standard form of a linear equation	transformation
Chapter 3 (p. 130)	<i>Chapter 3 (p. 146)</i>
translation	vertex
Chapter 3 (p. 146)	Chapter 3 (p. 156)
vertex form of an absolute value function	vertical shrink
Chapter 3 (p. 158)	<i>Chapter 3 (p. 148)</i>
vertical stretch	<i>x</i> -intercept
Chapter 3 (p. 148)	<i>Chapter 3 (p. 131)</i>

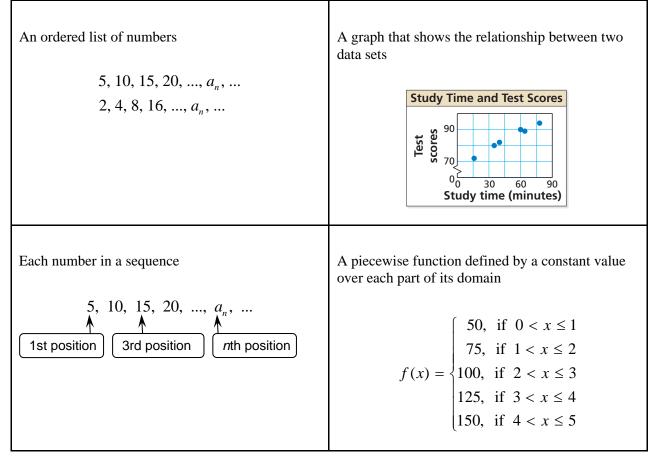


y-intercept

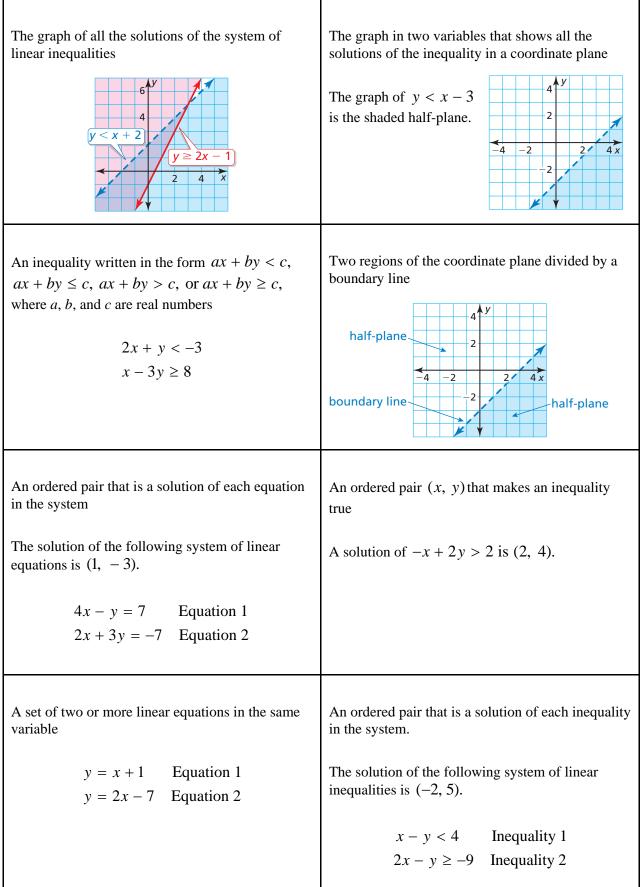

Chapter 3 (p. 131)

The *y*-coordinate of a point where the graph crosses the *y*-axis $y_{\text{v-intercept} = b}$ (0, b)

arithmetic sequence	causation
Chapter 4 (p. 210)	<i>Chapter 4 (p. 205)</i>
common difference	correlation
<i>Chapter 4 (p. 210)</i>	Chapter 4 (p. 197)
correlation coefficient	extrapolation
<i>Chapter 4 (p. 203)</i>	<i>Chapter 4 (p. 205)</i>
interpolation	line of best fit
<i>Chapter 4 (p. 205)</i>	<i>Chapter 4 (p. 203)</i>



line of fit	linear model
Chapter 4 (p. 198)	Chapter 4 (p. 178)
linear regression	parallel lines
<i>Chapter 4 (p. 203)</i>	Chapter 4 (p. 188)
perpendicular lines	piecewise function
Chapter 4 (p. 189)	<i>Chapter 4 (p. 218)</i>
point-slope form	residual
Chapter 4 (p. 182)	<i>Chapter 4 (p. 202)</i>



Copyright © Big Ideas Learning, LLC All rights reserved.

scatter plot Chapter 4 (p. 196)	sequence Chapter 4 (p. 210)
(p. 170)	Chapter + (p. 210)
step function	terms of a sequence
<i>Chapter 4 (p. 220)</i>	<i>Chapter 4 (p. 210)</i>

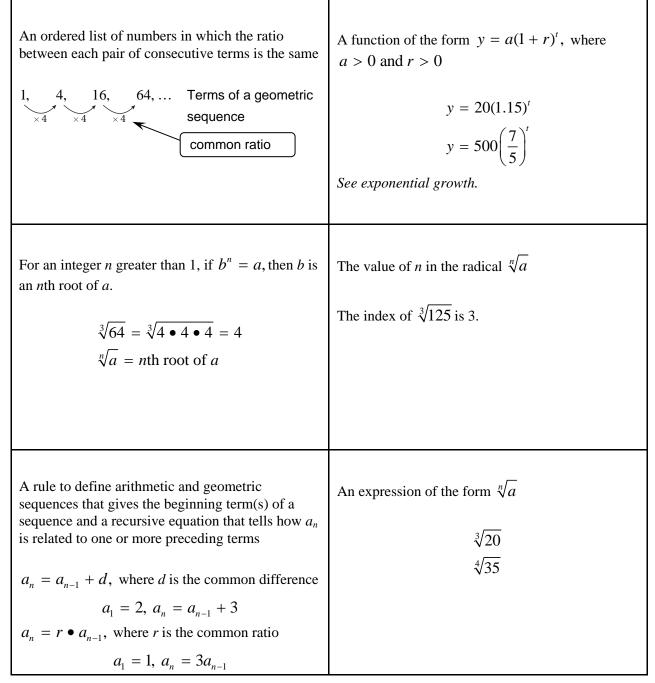
graph of a linear inequality	graph of a system of linear inequalities
<i>Chapter 5 (p. 268)</i>	<i>Chapter 5 (p. 275)</i>
half-planes	linear inequality in two variables
<i>Chapter 5 (p. 268)</i>	<i>Chapter 5 (p. 268)</i>
solution of a linear inequality in two variables	solution of a system of linear equations
<i>Chapter 5 (p. 268)</i>	<i>Chapter 5 (p. 236)</i>
solution of a system of linear inequalities	system of linear equations
<i>Chapter 5 (p. 274)</i>	<i>Chapter 5 (p. 236)</i>

system of linear inequalities

Chapter 5 (p. 274)

A set of two or more linear inequalities in the same variables

y < x + 2	Inequality 1
$y \ge 2x - 1$	Inequality 2


common ratio	compound interest
<i>Chapter</i> 6 (p. 332)	<i>Chapter</i> 6 (p. 317)
explicit rule	exponential decay
<i>Chapter</i> 6 (p. 340)	<i>Chapter 6 (p. 315)</i>
exponential decay function	exponential equation
Chapter 6 (p. 315)	<i>Chapter 6 (p. 326)</i>
exponential function	exponential growth
<i>Chapter 6 (p. 306)</i>	Chapter 6 (p. 314)

The interest earned on the principle and on previously earned interest The balance <i>y</i> of an account earning compound interest is $y = P\left(1 + \frac{r}{n}\right)^{nt}$, where <i>P</i> is the principle (initial amount), <i>r</i> is the annual interest rate (in decimal form), <i>t</i> is the time (in years), and <i>n</i> is the number of times interest is compounded per year.	The ratio between each pair of consecutive terms in a geometric sequence $1, 4, 16, 64, \dots$ Terms of a geometric sequence common ratio
When a quantity decreases by the same factor over equal intervals of time See exponential decay function.	A rule to define arithmetic and geometric sequences that gives a_n as a function of the term's position number n in the sequence An explicit rule for the arithmetic sequence 1, 7, 13, 19, is $a_n = 1 + 6(n - 1)$, or $a_n = 6n - 5$.
An equation in which variable expressions occur as exponents $2^{x+1} = 2^{5}$ $5 = 5^{4x-7}$	A function of the form $y = a(1 - r)^t$, where a > 0 and $0 < r < 1y = 20(0.15)^ty = 500\left(\frac{7}{8}\right)^tSee exponential decay.$
When a quantity increases by the same factor over equal intervals of time See exponential growth function.	A nonlinear function of the form $y = ab^x$, where $a \neq 0, b \neq 1$, and $b > 0$ $y = -2(5)^x$ $y = 2(0.5)^x$

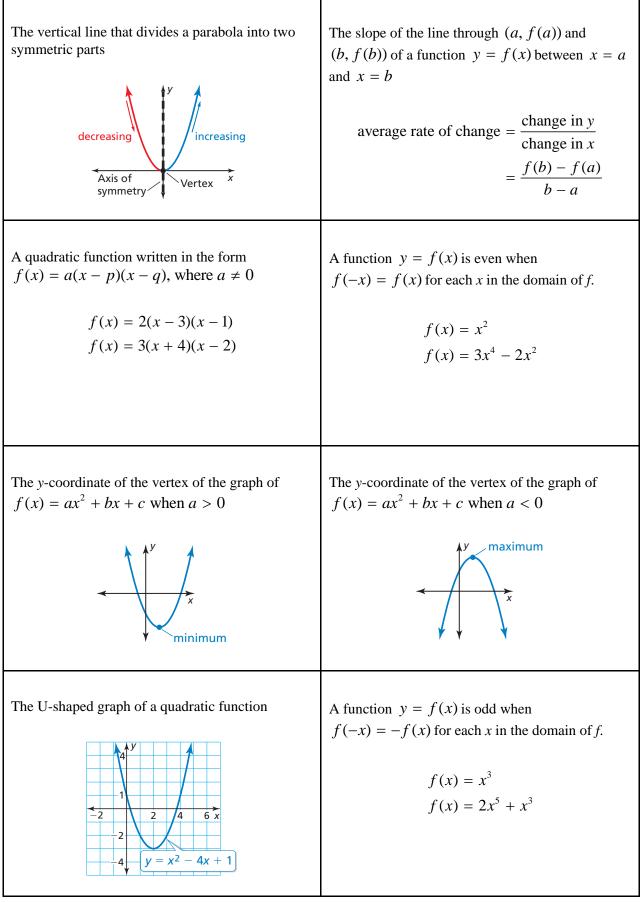
T

٦

exponential growth function	geometric sequence
<i>Chapter</i> 6 (p. 314)	Chapter 6 (p. 332)
index of a radical	<i>n</i> th root of <i>a</i>
Chapter 6 (p. 300)	Chapter 6 (p. 300)
radical	recursive rule
Chapter 6 (p. 300)	Chapter 6 (p. 340)

binomial	closed
Chapter 7 (p. 359)	Chapter 7 (p. 360)
degree of a monomial	degree of a polynomial
Chapter 7 (p. 358)	Chapter 7 (p. 359)
factored completely	factored form
Chapter 7 (p. 404)	Chapter 7 (p. 378)
factoring by grouping	FOIL Method
Chapter 7 (p. 404)	Chapter 7 (p. 367)

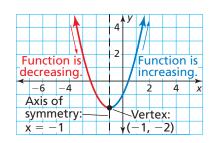
Г


When an operation performed on any two numbers in the set results in a number that is also in the set The set of integers is closed under addition, subtraction, and multiplication, but not under division.	A polynomial with two terms $x^{2} + 3x$ $2x - 1$
The greatest degree of the terms in a polynomial The degree of $6x^2 + x$ is 2. The degree of $x^5 + x^2 - 8$ is 5.	The sum of the exponents of the variables in the monomial The degree of 5 is 0. The degree of x^2 is 2. The degree of $2xy^3$ is $1 + 3 = 4$.
A polynomial that is written as a product of factors $x^{2} + 2x = x(x + 2)$ $x^{2} + 5x - 24 = (x - 3)(x + 8)$	A polynomial that is written as a product of unfactorable polynomials with integer coefficients $3x^{3} - 18x^{2} + 24x = 3x(x^{2} - 6x + 8)$ $= 3x(x - 2)(x - 4)$
A shortcut for multiplying two binomials by finding the sum of the products of the first terms, outer terms, inner terms, and last terms $F (\mathbf{x} + 1)(\mathbf{x} + 2) \longrightarrow x(x) = x^{2}$ $O (\mathbf{x} + 1)(x + 2) \longrightarrow x(2) = 2x$ $I (x + 1)(\mathbf{x} + 2) \longrightarrow 1(x) = x$ $L (x + 1)(x + 2) \longrightarrow 1(2) = 2$	To use the Distributive Property to factor a polynomial with four terms $x^{3} + 3x^{2} + 2x + 6 = (x^{3} + 3x^{2}) + (2x + 6)$ $= x^{2}(x + 3) + 2(x + 3)$ $= (x + 3)(x^{2} + 2)$

leading coefficient	monomial
Chapter 7 (p. 359)	<i>Chapter 7 (p. 358)</i>
polynomial	repeated roots
Chapter 7 (p. 359)	Chapter 7 (p. 379)
roots	standard form of a polynomial
Chapter 7 (p. 378)	Chapter 7 (p. 359)
trinomial	Zero-Product Property
Chapter 7 (p. 359)	Chapter 7 (p. 378)

Г

A number, a variable, or a product of a number and one or more variables with whole number exponents -5 $0.5 y^{2}$ $4x^{2}y$	The coefficient of the first term of the polynomial written in standard form The leading coefficient of $3x^2 + 5x - 1$ is 3.
Two or more roots of an equation that are the same number The equation $(x + 2)^2 = 0$ has repeated roots of x = -2.	A monomial or a sum of monomials 5x + 2 $x^2 + 5x + 2$
A polynomial in one variable written with the exponents of the terms decreasing form left to right $2x^{3} + x^{2} - 5x + 12$ $-x^{3} + 15x + 3$	The solution of a polynomial equation The roots of the equation $(x + 9)(x - 4) = 0$ are x = -9 and $x = 4$.
If the product of two real numbers is 0, then at least one of the numbers is 0. (x+6)(x-5) = 0 $x+6 = 0 or x-5 = 0$ $x = -6 or x = 5$	A polynomial with three terms $x^2 + 5x + 2$


average rate of change	axis of symmetry
Chapter 8 (p. 462)	Chapter 8 (p. 420)
even function	intercept form
Chapter 8 (p. 442)	Chapter 8 (p. 450)
maximum value	minimum value
Chapter 8 (p. 433)	<i>Chapter</i> 8 (p. 433)
odd function	parabola
Chapter 8 (p. 442)	<i>Chapter</i> 8 (p. 420)

Copyright © Big Ideas Learning, LLC All rights reserved.

vertex form of a quadratic function	vertex of a parabola
Chapter 8 (p. 444)	Chapter 8 (p. 420)
zero of a function	
<i>Chapter 8 (p. 428)</i>	

The lowest point on a parabola that opens up or the highest point on a parabola that opens down

A quadratic function written in the form $f(x) = a(x - h)^2 + k$, where $a \neq 0$

$$y = (x - 2)^2$$

 $y = -2(x + 4)^2 + 3$

An *x*-value of a function *f* for which f(x) = 0; an *x*-intercept of the graph of the function

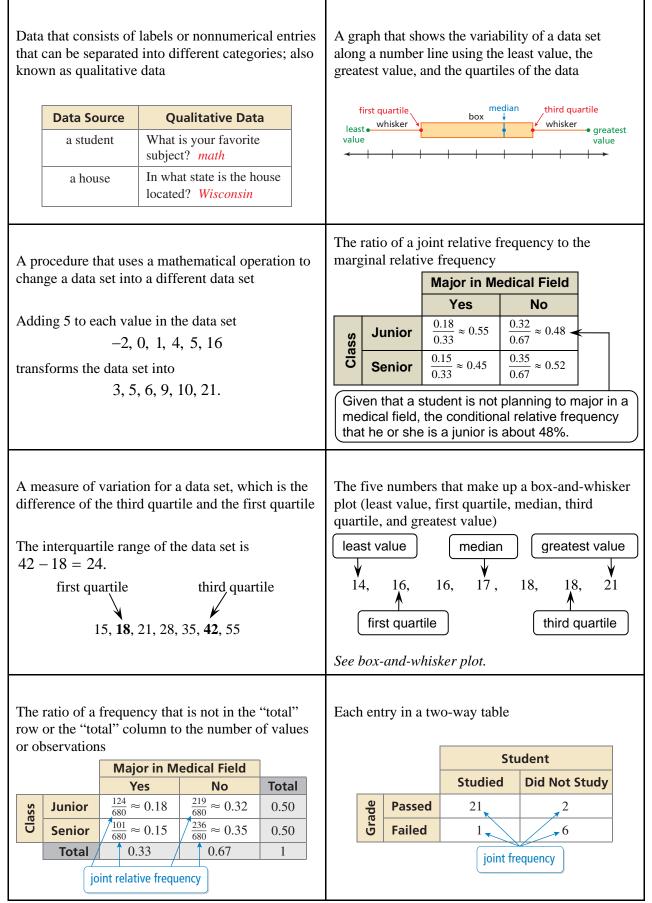
The zero of f(x) = 2x - 6 is 3 because f(3) = 0 and 3 is the *x*-intercept of the graph of the function.

completing the square	conjugates
Chapter 9 (p. 506)	<i>Chapter 9 (p. 482)</i>
counterexample	discriminant
Chapter 9 (p. 479)	Chapter 9 (p. 518)
like radicals	quadratic equation
Chapter 9 (p. 484)	Chapter 9 (p. 490)
Quadratic Formula	quadratic function
Chapter 9 (p. 516)	<i>Chapter</i> 9 (p. 420)

Г

Binomials of the form $a\sqrt{b} + c\sqrt{d}$ and $a\sqrt{b} - c\sqrt{d}$, where <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are rational numbers $6\sqrt{5} + 2\sqrt{3}$ and $6\sqrt{5} - 2\sqrt{3}$	To add a constant <i>c</i> to an expression of the form $x^{2} + bx$ so that $x^{2} + bx + c$ is a perfect square trinomial $x^{2} + 6x + 9 = (x + 3)^{2}$ $x^{2} + bx + \left(\frac{b}{2}\right)^{2} = \left(x + \frac{b}{2}\right)^{2}$
The expression under the radical symbol, $b^2 - 4ac$, in the Quadratic Formula The value of the discriminant of the equation $3x^2 - 2x - 7 = 0$ is $b^2 - 4ac = (-2)^2 - 4(3)(-7) = 88.$	An example that proves that a general statement is not true <i>Conjecture</i> : Every whole number ending in 6 evenly divides 3. <i>Counterexample</i> : 16 does not evenly divide 3.
A nonlinear equation that can be written in the standard form $ax^2 + bx + c = 0$, where $a \neq 0$ $x^2 + 4x = 12$ $-x^2 + 1 = 2x$	Radicals with the same index and radicand $3\sqrt{11}$ and $5\sqrt{11}$ $4\sqrt[3]{x}$ and $5\sqrt[3]{x}$
A nonlinear function that can be written in the standard form $y = ax^2 + bx + c$, where $a \neq 0$ $y = -16x^2 + 48x + 6$	The real solutions of the quadratic equation $ax^{2} + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$, where $a \neq 0$ and $b^{2} - 4ac \ge 0$. To solve $2x^{2} + 13x - 7 = 0$, substitute 2 for <i>a</i> , 13 for <i>b</i> , and -7 for <i>c</i> in the Quadratic Formula. $x = \frac{-13 \pm \sqrt{13^{2} - 4(2)(-7)}}{2(2)} \rightarrow x = \frac{1}{2}$ and $x = -7$

1


radical expression	rationalizing the denominator
Chapter 9 (p. 480)	Chapter 9 (p. 482)
simplest form Chapter 9 (p. 480)	system of nonlinear equations Chapter 9 (p. 526)

To eliminate a radical from the denominator of a fraction by multiplying by an appropriate form of 1	An expression that contains a radical $\sqrt{50} - 2$
$\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} \bullet \frac{\sqrt{10}}{\sqrt{10}} = \frac{\sqrt{10}}{\sqrt{100}} = \frac{\sqrt{10}}{10}$ $\frac{\sqrt{2}}{\sqrt{3n}} = \frac{\sqrt{2}}{\sqrt{3n}} \bullet \frac{\sqrt{3n}}{\sqrt{3n}} = \frac{\sqrt{6n}}{\sqrt{9n^2}} = \frac{\sqrt{6n}}{3n}$	$\sqrt{64x^3}$
A system in which at least one of the equations is nonlinear $y = 2x^{2} + 5x - 1$ Equation 1 $y = x - 3$ Equation 2	A radical that has no radicands with perfect <i>n</i> th powers as factors other than 1, no radicands that contain fractions, and no radicals that appear in the denominator of a fraction $\sqrt{27} = 3\sqrt{3}$ $\frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$

cube root function	inverse function
Chapter 10 (p. 552)	Chapter 10 (p. 569)
inverse relation	radical equation
Chapter 10 (p. 568)	Chapter 10 (p. 560)
radical function	square root function
Chapter 10 (p. 545)	Chapter 10 (p. 544)

	1				
Functions that undo each other	A radical function with an index of 3				
$f(x) = 2x - 5$ and $g(x) = \frac{1}{2}x + \frac{5}{2}$	$y = 5\sqrt[3]{x-6}$ $y = -\sqrt[3]{x+2} - 8$				
An equation that contains a radical expression with	When the input and output values of the original relation are switched				
a variable in the radicand	(-4, 7), (-2, 4), (0, 1), (2, -2), (4, -5)				
$\sqrt{x} + 6 = 12$ $4 - 2\sqrt{x} = 0$ $\sqrt{3x - 1} = \sqrt{x + 4}$	(7, -4), (4, -2), (1, 0), (-2, 2), (-5, 4)				
A function that contains a square root with the independent variable in the radicand $f(x) = 3\sqrt{x-5}$ $f(x) = -\sqrt{x+1} + 2$	A function that contains a radical expression with the independent variable in the radicand $g(x) = \sqrt{x} - 5$ $h(x) = \sqrt{3x + 6}$				

box-and-whisker plot	categorical data
Chapter 11 (p. 594)	Chapter 11 (p. 618)
conditional relative frequency	data transformation
<i>Chapter 11 (p. 612)</i>	<i>Chapter 11 (p. 589)</i>
five-number summary	interquartile range
Chapter 11 (p. 594)	Chapter 11 (p. 595)
joint frequency	joint relative frequency
<i>Chapter 11 (p. 610)</i>	<i>Chapter 11 (p. 611)</i>

Copyright © Big Ideas Learning, LLC All rights reserved.

marginal frequency	marginal relative frequency
Chapter 11 (p. 610)	Chapter 11 (p. 611)
mean	measure of center
Chapter 11 (p. 586)	Chapter 11 (p. 586)
measure of variation	median
<i>Chapter 11 (p. 587)</i>	Chapter 11 (p. 586)
misleading graph	mode
Chapter 11 (p. 620)	<i>Chapter 11 (p. 586)</i>

The sum of the joint relative frequencies in a row or a column	The sums of the rows and columns in a two-way table						
Major in Medical Field	Age						
Yes No Total	12–13 14–15 16–17 Total						
Sector Junior $\frac{124}{680} \approx 0.18$ $\frac{219}{680} \approx 0.32$ 0.50 Sector $\frac{101}{111} \approx 0.15$ $\frac{236}{236} \approx 0.35$ 0.50	Ride Bus 24 12 14 50 Does Not Ride Bus 16 13 21 50						
	Does Not Ride Bus 16 13 21 50						
Total 0.33 0.67 1	Total 40, 25 35 100						
marginal relative frequency	marginal frequency						
A measure that represents the center, or typical value, of a data set The mean, median, and mode are measures of center.	The sum of a numerical data set divided by the number of data values The mean of the values 7, 4, 8, and 9 is $\frac{7+4+8+9}{4} = \frac{28}{4} = 7.$						
The middle number of a numerical data set when the values are written in numerical order The median of the data set 24, 25, 29, 33, 38 is 29.	A measure that describes the spread, or distribution, of a data set The range and standard deviation are measures of variation.						
The value or values that occur most often in a data set The mode of the data set 3, 4, 4, 7, 7, 9, 12 are 4 and 7.	A statistical graph that is not drawn appropriately Tuition, Room, and Board at All Colleges and Universities 18,500 17,500 16,000 16,500 16,000 16,500 16,500 16,500 16,500 16,000 16,500 16,000 16,500 16,000 16,500 16,000 16,500 16,00						

	۱ ۱
outlier	qualitative data
<i>Chapter 11 (p. 587)</i>	Chapter 11 (p. 618)
quantitative data	quartiles
Chapter 11 (p. 618)	Chapter 11 (p. 594)
range of a data set	standard deviation
<i>Chapter 11 (p. 587)</i>	<i>Chapter 11 (p. 588)</i>
two-way table Chapter 11 (p. 610)	
Copyright @ Big Ideas Learning 11 C	Big Ideas Math Algebra 1

that et		labels or nonnumerical entries l into different categories		ta value that the other value		-		
	Data Source	Qualitative Data	In the data set 2, 4, 4, 5, 6, 64, the data value 64 is				ue 64 is	
	a student	What is your favorite subject? <i>math</i>	an o	utlier.				
	a house	In what state is the house located? <i>Wisconsin</i>						
	o four equal pa			a that consist of easurements Data Source a student a house	e C Wh	Quantit a at is you	ative Data ur age? 15 bedrooms?	
The st $\sigma = \lambda$	rical data set di candard deviati $\sqrt{\frac{(x_1 - \overline{x})^2 + \overline{x}}{x_1 + \overline{x}}}$	nuch a typical value in a ffers from the mean on is given by $\frac{(x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}$ er of values in the data set.	valu The	difference of e of a data set range of the c -12 = 23.	ţ			
			A frequency table that displays data collected for one source that belong to two different categor					
						two dif	fferent cate	
				source that be		two di	fferent cate	

٦